Analysis of the Role of trans-Translation in the Requirement of tmRNA for limm Growth in Escherichia coli
نویسنده
چکیده
The small, stable RNA molecule encoded by ssrA, known as tmRNA or 10Sa RNA, is required for the growth of certain hybrid limm phages in Escherichia coli. tmRNA has been shown to tag partially synthesized proteins for degradation in vivo by attaching a short peptide sequence, encoded by tmRNA, to the carboxyl termini of these proteins. This tag sequence contains, at its C terminus, an amino acid sequence that is recognized by cellular proteases and leads to degradation of tagged proteins. A model describing this function of tmRNA, the trans-translation model (K. C. Keiler, P. R. Waller, and R. T. Sauer, Science 271:990–993, 1996), proposes that tmRNA acts first as a tRNA and then as a mRNA, resulting in release of the original mRNA template from the ribosome and translocation of the nascent peptide to tmRNA. Previous work from this laboratory suggested that tmRNA may also interact specifically with DNA-binding proteins, modulating their activity. However, more recent results indicate that interactions between tmRNA and DNA-binding proteins are likely nonspecific. In light of this new information, we examine the effects on limm growth of mutations eliminating activities postulated to be important for two different steps in the trans-translation model, alanine charging of tmRNA and degradation of tagged proteins. This mutational analysis suggests that, while charging of tmRNA with alanine is essential for limm growth in E. coli, degradation of proteins tagged by tmRNA is required only to achieve optimal levels of phage growth. Based on these results, we propose that transtranslation may have two roles, the primary role being the release of stalled ribosomes from their mRNA template and the secondary role being the tagging of truncated proteins for degradation.
منابع مشابه
tmRNA Is Essential in Shigella flexneri
Nonstop mRNAs pose a challenge for bacteria, because translation cannot terminate efficiently without a stop codon. The trans-translation pathway resolves nonstop translation complexes by removing the nonstop mRNA, the incomplete protein, and the stalled ribosome. P1 co-transduction experiments demonstrated that tmRNA, a key component of the trans-translation pathway, is essential for viability...
متن کاملTrans-translation ensures timely initiation of DNA replication and DnaA synthesis in Escherichia coli.
The trans-translation pathway, mediated by the transfer messenger RNA (tmRNA; encoded by the ssrA gene) and the SmpB protein (tmRNA-binding protein expressed in Salmonella enterica), which is conserved in bacteria, is required for various cellular processes. A previous study has shown that trans-translation is required to ensure timely (non-delayed) dnaA transcription and consequent initiation ...
متن کاملDistinct tmRNA sequence elements facilitate RNase R engagement on rescued ribosomes for selective nonstop mRNA decay
trans-Translation, orchestrated by SmpB and tmRNA, is the principal eubacterial pathway for resolving stalled translation complexes. RNase R, the leading nonstop mRNA surveillance factor, is recruited to stalled ribosomes in a trans-translation dependent process. To elucidate the contributions of SmpB and tmRNA to RNase R recruitment, we evaluated Escherichia coli-Francisella tularensis chimeri...
متن کاملtmRNA decreases the bactericidal activity of aminoglycosides and the susceptibility to inhibitors of cell wall synthesis.
Trans-translation is a process that recycles ribosomes stalled on problematic mRNAs. tmRNA, coded by the DeltassrA gene, is a major component of trans-translation. Bacteria lacking tmRNA are more sensitive to several inhibitors of protein synthesis when compared to a wild type strain. We measured bacterial growth of the DeltassrA and wild type strains in Escherichia coli in the presence of 14 a...
متن کاملIn vitro trans-translation of Thermus thermophilus: ribosomal protein S1 is not required for the early stage of trans-translation.
Transfer-messenger RNA (tmRNA) plays a dual role as a tRNA and an mRNA in trans-translation, during which the ribosome replaces mRNA with tmRNA encoding the tag-peptide. These processes have been suggested to involve several tmRNA-binding proteins, including SmpB and ribosomal protein S1. To investigate the molecular mechanism of trans-translation, we developed in vitro systems using purified r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999